In vitro control release, cytotoxicity assessment and cellular uptake of methotrexate loaded liquid-crystalline folate nanocarrier.
نویسندگان
چکیده
Folate molecules self-assemble in the form of stacks to form liquid-crystalline solutions. Nanocarriers from self-assembled folates are composed of highly ordered structures, which offer high encapsulation of drug (95-98%), controlled drug release rates, active cellular uptake and biocompatibility. Recently, we have shown that the release rates of methotrexate can be controlled by varying the size of nanoparticles, cross-linking cation and cross-linking concentration. The present study reports the in vitro cytotoxic behavior of methotrexate loaded liquid-crystalline folate nanoparticles on cultured HeLa cells. Changing drug release rates can influence cytotoxicity of cancer cells. Therefore, to study the correlation of release rate and cytotoxic behavior, the effect of release controlling parameters on HeLa cells was studied through MTT assay. It is reported that by controlling the methotrexate release, the survival rates of HeLa cells can be controlled. Released methotrexate kills HeLa cells as effectively as free methotrexate solution. The co-culture based in vitro cellular uptake study through fluorescence microscopy on folate receptor positive and negative cancer cells shows that the present nanocarrier has the potential to distinguish cancer cells from normal cells. Overall, the present study reports the in vitro performance of self-assembled liquid-crystalline folate nanoparticles, which will be a platform for further in vivo studies and clinical trials.
منابع مشابه
Synthesis and cytotoxicity evaluation of electrospun PVA magnetic nanofibers containing doxorubicin as targeted nanocarrier for drug delivery
Objective(s): The purpose of this study was preparation and evaluation of PVA-Fe3O4 nanofibers as nanocarrier of doxorubicin (DOX) by measuring their drug release together with their in vitro cytotoxicity toward cancer cells at different pH values. Methods: Fe3O4 nanoparticles were synthesized by coprecipitation...
متن کاملIn-Vitro Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells
Cationic polymeric nanoparticles have great potential for developing drug delivery systemswith limited side effects for tumor medication. The goal of this research is investigation ofcationic dextran-spermine polymer (DS) efficacy for improvement of hydrophilic drug deliveryto negatively charged cancerous cells. Capecitabine (as a hydrophilic antineoplastic drug) wasloaded into the magnetic dex...
متن کاملIn-Vitro Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells
Cationic polymeric nanoparticles have great potential for developing drug delivery systemswith limited side effects for tumor medication. The goal of this research is investigation ofcationic dextran-spermine polymer (DS) efficacy for improvement of hydrophilic drug deliveryto negatively charged cancerous cells. Capecitabine (as a hydrophilic antineoplastic drug) wasloaded into the magnetic dex...
متن کاملSalvianolic acid B protects against myocardial damage caused by nanocarrier TiO2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO2 nanoparticles
Targeted delivery by the folate ligand is an effective way to enhance an anti-breast carcinoma effect, due to its high affinity for the folate receptor, which is overexpressed in many tumor cells. In this study, we firstly synthesized a folic acid (FA)-targeted and polyethylene glycol (PEG)-modified TiO2 nanocarrier. Then, an FA-PEG-TiO2 nanoparticle (NP) codelivery system loaded with curcumin ...
متن کاملMultifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis
Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive cartilage and bone destruction. Activated macrophages that overexpress folic acid (FA) receptors play an important role in RA, due to their abundance in inflamed synovial membrane and joints. In an effort to deliver drugs to the inflamed tissues, multifunctional FA receptor-targeting and pH-responsive nanocarriers w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
دوره 69 شماره
صفحات -
تاریخ انتشار 2015